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The impact of a water wedge on a wall 

By E. CUMBERBATCH? 
Department of Mathematics, University of Manchester 

(Received 22 June 1959) 

1. Introduction 
This paper is intended to give some indication of the impact forces of a water 

wave on a wall. The effect of gravity forces in the small time interval of impact 
considered will be small and is neglected. The shape of the wave before impact 
is considered to be a two-dimensional wedge which is assumed to strike a wall at 
right angles to its path. The wedge is assumed to be infinite in extent and to have 
a uniform translational velocity V before impact. The choice of a wedge shape 
enables the problem to be formulated in terms of similarity variables x/ Vt7 y/ Vt, 
where the origin of the x, y plane is at the initial point of contact of the vertex of 
the wedge with the wall. The solution presented here can be easily adapted to 
the problem of an axi-symmetric cone of water striking a wall, but this is not 
pursued in the present paper. 

A solution is obtained in $5 by suitably joining solutions valid at large and 
small distances from the wall. These solutions are obtained in $$3 and 4, 
respectively. The solution valid far from the wall may be regarded as an 
expansion beginning from the initial wedge shape. The solution valid near the 
wall may be regarded as an expansion beginning from a wedge having its axis 
along the wall and its vertex at the point of contact of the free surface with the 
wall. The method adopted in 0 5 of joining the solutions valid at large and small 
distances from the wall ensures continuity at the matching point of the slope 
and curvature of the free surface and the free surface potential. The condition 
of the conservation of mass is also satisfied. 

A check on the method of solution is provided by the theorem that, for free 
surface problems with similarity, the arc length between fluid particles on the 
free surface is conserved. This theorem has been proved by Wagner (193'2) and 
Garabedian (1953). The arc length of the solution obtained may be compared 
with the arc length of the wedge shape obtained in the absence of the wall. The 
difference between these arc lengths for the 22.2" and 45" semi-angle wedge 
examples computed is 0.05Vt and 0.26Vt7 respectively. It may therefore be 
inferred that the expansions and matching procedure used in this paper provide 
a reasonable description of the flow. 

The solution valid far from the wall is obtained in $ 3  by assuming an expan- 
sion of the flow equations in this region. These equations are approximated to 
give four first-order non-linear equations which are reduced to two first-order 
equations, and a numerical solution is then obtained. Although the solution 
valid far from the wall may be inaccurate near the wall, it is used in $ 3  to 
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provide a first estimate of the flow there. It is found that the wall condition of 
zero normal velocity cannot be satisfied at all points of the wall in this solution. 
However, by imposing a condition of zero total mass flow across the plane of 
flow, it is found that a moderate approximation to the wall condition is obtained. 
An estimate of the accuracy of the solution obtained in this way is provided by 
the condition of the conservation of mass. It is found that, of the mass displaced 
outside the oncoming wedge shape, 60 yo is conserved for the 22.2"-semi-angle 
wedge and 86 yo for the 45" semi-angle wedge. 

The solution valid near the wall is obtained in $4, and is used to  improve the 
description of the flow near the wall of the solution obtained in 9 3. An expan- 
sion of the flow equations near the wall, similar to the expansion far from the 
wall but with the similarity variables interchanged, is assumed and the flow 
equations are again reduced to two first-order equations. This solution is then 
joined, in Q 5, to the solution valid far from the wall. The conditions of continuity 
of the slope and curvature of the free surface at the matching point uniquely 
determine the matching of the solutions of the reduced equations. An arbitrary 
constant appears when the matched solution is completed in the physical plane, 
corresponding to an arbitrary position of the vertex of the wedge along the wall. 
This arbitrary constant is determined by imposing the condition of continuity of 
the potential on the free surface at the matching point. For a given angled 
wedge at infinity, the mass conservation condition is satisfied by choice of the 
angle at which the free surface meets the wall. 

In  the general problem of wave impact on a wall the total exchange of 
momentum with the wall up to a given time might be crudely estimated by 
supposing that all the fluid, which would have crossed the plane of the wall had 
the wall not been there, has lost all its momentum and the rest has lost none. 
The force on the wall could then be obtained by differentiation with respect to 
time. The analysis of this paper indicates that in two cases (wedges of semi- 
angles 45" and 22.2') the force is greater than the value so obtained by factors 
2.4 and 1.6, respectively. 

2. Formulation 
A two-dimensional wedge of water, incompressible and of density p, is taken 

to strike a flat wall at time t = 0 with velocity V .  The axis of the wedge is 
perpendicular to the wall. The initial point of contact of the vertex of the wedge 
with the wall is taken as the origin of the x, y plane, with the y-axis along the 
axis of the wedge and the x-axis along the wall. The semi-angle of the wedge is 
taken to be tan-l rn,. 

The problem is formulated in terms of a velocity potential @ = @(x, y, t )  
which, for an irrotational flow, satisfies Laplace's equation 

PQ, a w  
ax2 a32 
- +--- = 0 

at any time t. Bernoulli's theorem states that the quantity, 
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where p is the pressure at a point in the flow, depends only on the time, 
Boundary conditions of zero normal velocity at the wall y = 0 and on the line 
x = 0 are derived from the wall condition and from considerations of sym- 
metry about the axis of the wedge, respectively. The flow far from the wall 
approximates to uniform translation given by 

aa, aa, - - w - V ,  - - N O .  
aY ax (3) 

The potential has also to satisfy boundary conditions on the free surface 
y = )i(x, t ) ,  namely, that the pressure is a constant which is taken as zero, and 
that particles in the free surface remain there, which may be written as 
(DID) (y-)i) = 0. This second condition is expressed in terms of as 

(4) 
aa, a7 aa,aT 
ay at axax 
_ -  - -+---. 

The absence of a fundamental length in the formulation of the problem 
implies that a similarity solution is possible. Upon a transformation of the 
independent variables 2, y, t to 

the assumption of a similarity solution implies that the dependent variables are 
functions of A, ,u and tl in the form 

Equation (1) may be expressed in terms of the similarity variables to show 
that # also satisfies Laplace's equation 

The boundary condition (a), valid on the free surface p = ( (A) ,  is transformed to 

Substitution of the free surface pressure condition, p = 0, in Bernoulli's 
theorem, (2), gives that on p = [(A) 

where C is a constant. Equation (3) for the flow far from the wall gives that 

as p + 03. Hence, for large p 
4 --Pa (11) 

23-2 
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Substitution of the above values for # and its derivatives far from the wall in 
equation (9) yields the value of C as unity provided the constant term in # is 
taken to be zero. Similarly, equation (8) may be used to derive h(dp/dh) N p + 1 
for the asymptotic shape of the free surface. On integration this becomes 

m,(p + I), (12) 

where tan-lm, is the semi-angle of the water wedge. This shows that for time 
t > 0, the free surface in the similarity plane is asymptotic to the wedge with 
vertex at p = - 1 shown in figure 1. This wedge represents the position the 
original wedge would have reached in the absence of the wall. 

F I G ~ E  1. A-p similarity plane showing a sketch of the free surface p = [ ( A ) .  The free 
surface tends at large p to h = m,(p+ 1) which represents the position the wedge would 
have reached in the absence of the wall. 

A simplification of the equations may be made by the substitution 

Equation (7) rewritten in terms of $ is 

and the boundary conditions (8) and (9) on the free surface p = E(A) may be 
expressed as 

(15) 
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respectively. The flow velocities may be written in terms of $ aa 

a@ !?!? ax = V ( E + h ) ,  ay = V(g+.). 

The boundary conditions of zero normal velocity on y = 0 and x = 0 are thus 

= o ,  (g) = o .  ($)p=o h=O 

The flow equations (14)-(18), derived in terms of $(A, p), are used in the 
following sections where two solutions are derived which are used at large and 
small distances from the wall. 

3. Solution at large distances from the wall 
In  this section the flow equations obtained in $ 2  are approximated in the 

region far from the wall. These equations are solved in the whole plane to 
provide a first approximation to the flow. It is seen that this solution is 
inadequate near the wall and the solution in this region is modified in later 
sections. 

An expansion of the function $(A, p) defined in 0 2 is sought containing as its 
dominant term the wedge behaviour $(A, p )  w - +p2 - p  - +A2 as p --f 00, which 
is obtained from (11) and (13). The form 

as p -f co. This form for $ has the same h dependence as the wedge solution at 
infinity. The form (19) satisfies the symmetrical boundary condition 

(a$/ah),=o = 0, 

(WPP) /PO = 0 but the wall condition 

is satisfied only if 
p==O 

A difficulty concerning this wall condition is encountered later in this section. 
On using the form (19) for $, the term independent of h in the flow equation 

(22) 
(14) is 

where the dash denotes differentiation with respect to p. The boundary equa- 
tions (15) and (16) for the free surface reduce to 

$:+2$1 = -2 ,  

where only the lowest powers of h have been retained. 
On making the substitution 
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equation (22) reduces to the first-order equation 

and (23), (24) become 
ah 2hy4 

dP x ' 
- 

The independent variable p is eliminated from equations (25), (26) (27) and (28) 
since i t  does not occur on the right-hand side of these equations. Dividing the 
equations (26), (27) and (28) by (25), the system reduces to 

where the functions A, $l and x are to be interpreted as functions of $o. 
Throughout this paper the same symbol will be used to denote the same 
physical quantity. 

Further reduction is accomplished by a transformation of the variables. The 
transformation corresponds to the extraction of the aymptotic wedge solution. 
The behaviour of Po and $l as p -+ co is given by (20). The behaviour of $o is 
rewritten in the form 

The behaviour of x = d$,/dp as ,u -too follows as x - -J(1-2$o). The 
shape of the free surface as p -+ 00 is given by (12), which may be expressed, 
using (32), 88 h w mlJ(l -2$o). New variablesf($o), g($o), z ( $ ~ ) ,  are therefore 
defined by 

.J(1-2$0) - l+P* (32) 

$1($0) = -kf($o) ,  ' ( $ 0 )  = m1g($O)d(1-2$O)J 

x(P0) = --Z($O) 4 1  - 2$0) ,  (33) 

where it follows, from the above, that as p -+ co, f, g and z all tend to one. 
Under the substitutions (33), equations (29), (30), (31) become 

Reduction to two equations follows immediately as the independent variable 
$o occurs only in the combination 1 - 2$0) and may be eliminated. 
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Dividing equations (36) and (36) by (34), the following two &st-order equations 
are obtained 

The equations (37), (38) are integrated numerically with the boundary condi- 
tions, f = 1, g = 1 at z = 1. 

Numerical integration of equations (37), (38) requires the initial values of 
dg/dz, df/dz. As the functions on the right-hand side of (37), (38) are indeter- 
minate at the starting point z = 1, an expansion 

f = 1 +fo(z - 1) +f,(z - +f2( z  - v+. .., 
g = 1 +g,(z- 1) +g,(z- 1)2+g2(z- 1)3+  ..., 

(39) 

(40) 

near the point z = 1 is assumed. This expansion is then substituted in equa- 
tions (37), (38) to find the required valuesf,, go. These are given by the equations 

fo = f { - 1 f J( 1 +$)I , 

go = ( 2 - f 0 ) / ( 2 + f o ) .  (42) 

Further coefficients in the expansions (39), (40) and details of the expansions 
used in the rest of this paper may be obtained from Cumberbatch (1958). Choice 
of the square-root sign to be taken in equation (41) for fo may be decided on 
inspection of the behaviour of equation (34) near z = 1. Substituting the 
expansion (39) in the right-hand side of (34) gives 

dz 
(1 - 2$,) - = (to+ 2) (z-  1) + ..., 

dP0 
(43) 

to the first power in ( z  - 1). Integration of (43) gives 

near z = 1. The value of J( 1 - 2$o) as ,u + co, which corresponds to z -+ 1, may 
be deduced from (32) to be infinite, and it follows from (44) therefore that 
(fo + 2) is positive. This condition is satisfied by both signs of the square root in 
(41) for m, > 1, corresponding to a wedge of semi-angle greater than 45O, but is 
satisfied only by the positive square-root sign for m, < 1. Solutions for wedges 
of semi-angle greater than 45" are not considered in this paper. 

The initial direction of integration from the point z = 1 for the solution of 
the reduced equations (37), (38) is deduced in the following manner from the 
assumption that the free surface expands away from the asymptotic wedge 
shape in the physical plane. The slope of the free surface is obtained from (27), 
using (33), as 

J( 1 - 2$,) N (2 - I)-l/(fo+Z) (44) 

(45) 
dP 
zi=nZlfs* 

On using the expansions (39) and (40), this becomes 

1 33 = --(I + ( 1  - f o - g o ) ( z -  I ) +  ...>. 
d h  m, 
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The condition that the slope dpldh increases along the free surface proceeding 
towards the wall from infinity implies that the initial direction of integration in 
the z-plane is chosen so that ( z  - I )  has the same sign as (1 -fo - go). For the 
45" and 22-2" semi-angle wedges computed, (1  -fo -go) is negative and the 
initial direction of integration is z decreasing. 

The integration should be terminated at a value of z corresponding to the 
wall conditions (21), which may be written in terms of the reduced variables, by 
using equations (25), (28) and (33), as 

These conditions are not simultaneously satisfied. This is a weakness of the 
form of +, given by (19), assumed for this solution. A single condition of zero 
total mass flow across a plane at right angles to the flow is imposed instead. This 
condition may be obtained by int.egrating the normal velocity, given by (17), 
across the plane of the flow at p = 0,  as 

Using the expressions in (47), (48) for d+,ldp and d+,/dp, and equation (33) for 
A, the condition (49) may be expressed in terms of the reduced variables as 

1 + 52' + @ g 2 ( f - f 2 )  = 0. (50) 

Equations (37), (38) are integrated until values z,, f,, g, are found which satisfy 
this condition. The wall is taken to be at the position in the physical plane 
corresponding to this point. 

Numerical solutions to equations (37), (38) are obtained for the cases m, = 1 
and m, = l/.J6, corresponding to wedges of semi-angle 45" and 22.2", re- 
spectively. These solutions are displayed in figure 2. The numerical integration 
proceeds from the point f = g = z = 1 until the mass flow condition (50) is 
satisfied by valuesf,,, gw, 2,. The values of zw obtained are small, being z, = 0.041 
and z, = 0.126 for the 45" and 22.2" wedges, respectively. The wall conditions 
(47) and (48) are therefore satisfied approximately as dy?.,/d,u is zero when z = 0 
and the vanishing of d+,ldp and the mass flow across p = 0 both reduce to 
1 +m:g2(f-f2) = 0 when z = 0. 

The solution in the physical plane is now deduced. Integration of (34) gives 

where k > 0 is a constant. Equation (33) now gives h in terms of z as 



The impact of a water wedge on a wall 

Equations (25), (33) and (34) are used to determine d,u/dz as * - - ~(1-2$ . , )  
dz 2-f-22' 

Using (51), integration of (53) gives 

361 

(53) 

where the constant of integration in this equation has been chosen to give 
p = 0 at ths wall position z = z,. 

I 2.0 

1 5 

1.0 

l.5 

3 

- 0.5 

- 1.0 

FIQWRE 2. Numerical solutions to equations (37), (38) for wedges of semi-angle 48' and 
22.2'. The equations are integrated from the point f = g = z = 1 until the mass flow 
condition (60) is satisfied at values z = 0.041 and z = 0-126, respectively. 

The constant k is determined from the condition that the solution has the 
asymptotic wedge behaviour given by (32) at large distances, which may be 
expressed in terms of z, using (51) and (54), as 

Since the integrals in (55) become infinite as z + 1, k is to be found from the 
eauation 

Denoting by z* a convenient point near z = 1, the integrals from z, to Z* are 
taken outside the limit sign in (56). The integrals from zw to z* are evaluated by 
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numerical integration and the integrals from z* to z under the limit sign are 
evaluated by expanding the integrand in powers of (z  - 1) using the expansion 
(39). For the 45' and 22.2" semi-angle wedge solutions computed, the values of 
k are found to be 1.74 and 1.30, respectively. 

Equations (52 ) ,  (54) give the shape of the free surface in parametric form with 
z as the parameter. The free surface shapes are drawn in figure 3 for the two 
wedge examples computed. The flow quantities $, and $l are given as functions 

0 0.5 1.5 2 0  2 5  3.0 
h 

FIUURE 3. Free surface shapes for the matched solution derived in § 6 for the 46' and 2 2 - 2 O  
semi-angle wedges are shown by the solid lines, with the matching points indicated by a 
crow. Broken lines indicate the position these wedges would have reached in the absence 
of the wall and have their vertices a t  p = - 1. The approximate solutions derived in 5 3 for 
these wedges are shown by dotted lines. 

of z by equation (51) and = - +f(z), respectively. As p is given aa a function 
of z by (54), the functions A, $,, $l and z are tabulated as functions of p in 
tables 1 and 2 for the 45' and 22.2' semi-angle wedges, respectively. The value 
of 11. = @,,(p) + A2@l(p) on the free surface, $F say, is given by the tables using 
the free surface A given there. However, $ can be evaluated at any point of 
the flow by using the appropriate value of A. 

The pressure on the wall due to the water wedge striking it is deduced as 
follows. The pressure at a point in the flow is given by Bernoulli's equation (2). 
Under the substitutions made in $2, the pressure coefficient p/+pT/'z may be 
derived in terms of the function $(A, p) as 
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Using the form of $ given by (19), this is written 

again retaining only h2 terms. The pressure distribution (58) is therefore para- 
bolic across planes at  right angles to the flow. A more convenient form of (58) 
is derived by obtaining the terms in the bracket on the right-hand side from 

Y h $0 $1 $F z 
0 2.09 - 1.01 0-236 0.024 0.041 
0.006 2.02 - 1.01 0.235 - 0.046 0.048 
0.014 1.94 - 1.01 0.231 - 0.141 0.061 
0.026 1.85 - 1.01 0.222 - 0.249 0-078 
0.043 1-78 - 1.01 0.205 - 0.372 0.102 
0.070 1.68 - 1.02 0.176 - 0.524 0.137 
0.118 1.60 - 1.03 0-115 - 0.738 0-2 
0.204 1-58 - 1.07 0.015 - 1.032 0-3 
0.303 1.57 - 1.13 - 0.080 - 1.330 0.4 
0.422 1.63 - 1.23 -0.168 - 1.679 0.6 
0.571 1.74 - 1.40 - 0.249 - 2.157 0.6 
0.773 1.89 - 1.65 - 0.322 - 2.807 0.7 
1.080 2.17 - 2.18 - 0.388 - 4.009 0.8 
1.701 2-74 - 3.51 - 0.447 - 6.863 0.9 

TABLE 1 

TABLES 1 AND 2. Values of the free surface shape A @ ) ,  and the flow quantities $&), 
z(p) for the approximate solution derived in 5 3 for wedges of semi-angle 46' (table 1) 

and 22.2' (table 2). Values of $ = $F along the free surface are also given. 

Y 
0 
0.006 
0.010 
0.016 
0.022 
0.030 
0-039 
0.048 
0.060 
0.073 
0.088 
0.107 
0.131 
0.159 
0-189 
0.223 
0-260 
0-302 
0.350 
0.408 
0.481 
0.576 
0.719 
0.991 

h 
1.000 
0.974 
0.948 
0.922 
0.896 
0.870 
0-845 
0.820 
0-794 
0.770 
0.746 
0.722 
0.700 
0.680 
0.666 
0.655 
0.649 
0.647 
0.648 
0.655 
0.669 
0.693 
0.736 
0-831 

$0 $1 $F 
- 0.347 0.472 0.125 
- 0.348 0.474 0.102 
- 0.349 0.475 0.078 
- 0.350 0.474 0.053 
- 0.352 0.472 0.027 
- 0.354 0.467 0.001 
- 0.356 0.460 - 0.027 
- 0.359 0.450 - 0.056 
- 0.362 0.436 - 0.087 
- 0.367 0.416 - 0.120 
- 0.373 0.391 - 0.156 
- 0.382 0.357 - 0.196 
- 0.393 0.312 - 0.241 
- 0.409 0.258 - 0.282 
- 0.429 0.199 - 0.341 
- 0.453 0.138 - 0.394 
- 0.483 0.073 - 0.452 
- 0.520 0.006 - 0.523 
- 0.567 - 0.063 - 0.593 
- 0.630 - 0.133 - 0.687 
- 0.716 - 0.205 - 0.807 
- 0.843 - 0.277 - 0.976 
- 1.055 - 0.351 - 1.245 
- 1.530 - 0.425 - 1.824 

TABLE 2. For explanation see table 1. 

2 

0.126 
0-136 
0.148 
0,161 
0-176 
0.193 
0.212 
0.233 
0.267 
0.285 
0.317 
0-355 
0.4 
0-45 
0.5 
0.55 
0.6 
0.65 
0.7 
0.75 
0.8 
0.85 
0.9 
0.95 
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(24), which is valid only on the free surface, in terms of the A co-ordinate of the 
free surface A,. Obtaining $; = x from (33), the pressure distribution (58) is 
written as 

( 2 -- jP  -(1-2$0)(1-2z) 1-- , 
4P V 2  

(59) 

where the values of $o, z and A, are given as functions of p in tables 1 and 2 for 
the two wedge examples computed. The pressure distribution on the wall p = 0 
is shown for these examples in figure 4. 

3 5  

3.0 

2.5 

2.0 
s- 
’“, 
9 

1.5 

1.0 

0.5 

0 
h 

FIGURE 4. Pressure distributions on the wall for the matched solution obtained in $ 5  for 
the 45’ and 22.2’ semi-angle wedges are shown by solid lines. The pressure distributions on 
the wall for the approximate solution of $ 3  for these wedges are shown by dotted lines. 

A force coefficient normalized with respect to the angle of the wedge is con- 
structed as follows. In  the absence of the wall, the momentum, per unit width 
of the wedge, passing p = 0 is pVv,  where v is the volume of fluid that has 
crossed p = 0 a t  any stage. A force F ,  derived as the rate of change of momen- 
tum across p = 0, is d dv 

F = - ( p V v ) = p V - .  at at 
The rate of change of the volume, dvldt, is expressed as VA,  where A is the 
area of the wedge at p = 0 at any stage. The force on a wall obstructing 
the flow of the wedge is the integral of the pressure over the wetted area A,. 
A normalized force coefficient C, is therefore defined as 
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where h, is the point of contact of the free surface with the wall. The force 
coefficients obtained in this way for the 45" and 22.2" semi-angle wedges are 
CF = 2.1 and CF = 1.4, respectively. 

An estimate of the accuracy of the solution obtained using the approximate 
equations (37)) (38) is provided by the condition of the conservation of mass. 
In  the absence of the wall the fluid occupies the wedge with vertex at p = - 1, 
as shown in figure 1. The area of this portion of the wedge in ,u < 0 is +ml. In  a 
flow obstructed by the wall, therefore, the area of fluid lying between the free 
surface and the wedge h = ml(p+ 1) is equal to +ml in an ideal solution. This 
area is 

(61) 

Transforming to the reduced variables by obtaining the free surface h from 
(52) and p from (54), the area (61) is expressed as 

This integral is treated in a similar manner to the integral (56)  defining k. 
It may be noted that the singular parts of the integrals in the curly brackct in 
(62) cancel due to the choice of Ic given in (56). For the 45" and 22.2" wedges, the 
integral (62) has the values 0.432 and 0.123 which are to be compared with the 
values of +m1, namely, 0.5 and 0.204. These values imply that the solution 
obtained from the approximate equations (37), (38) valid at large distances from 
the wall is inadequate in predicting the flow near the wall. The simple A* 
dependence assumed for @ in (19) is unable to describe the slope of the free 
surface near the wall. A more accurate solution in this domain is desired. Such 
a solution is examined in the next section, and will allow a suitable matching 
with the solution valid at large distances from the wall. 

4. Solution near the tip 
In  this section a solution is obtained which describes the flow in a region near 

the point of contact, &,, of the free surface with the wall. The solution is derived 
as the expansion beginning from the vertex of a wedge having its axis along the 
wall and its vertex at h = A,. The semi-angle of this wedge is the angle between 
the tangent to the free surface at the point of contact and the wall, which is 
taken to be tan-1 m2. It is to be noted that the position (A,) and the angle of 
the wedge determined by m2 are as yet arbitrary. In  the next section it will be 
described how A,, m2 may be determined to give a good matching of the solution 
of this section with the solution of $ 3  valid at large distances from the wall. 

An expansion of $(A, p )  in the form 
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is assumed near p = 0. This form satisfies the wall boundary condition 
(&,h/8p),,, = 0. The expansion (63) is analogous to the expansion (19) used in 
0 3, with the A, p axes interchanged. The equations resulting from the substitu- 
tion of the expansion (63) in the flow equations are therefore obtained by 
analogy with equations (22)-(31), h and p being interchanged and capitals 
replacing small symbols for the dependent variables. 

Reduction of the three equations corresponding to (29), (30) and (31) is 
effected by extracting the tip wedge solution. The slope of the free surface at 
the tip, &,, is -m2 and hence 

p N m2(hw-h) as p+O. (64) 

Yo N &-&(hw-h)2, 'r, - -4. (65) 

4 1 - 2 Y 0 )  - &,-A as p + O .  (66) 

yp,('k",) = -VmJ), P(%) = m2 G('k",)J(I - 2%), 

Corresponding to ( Z O ) ,  the flow near the tip is given by 

The behaviour of Yo is rewritten as 

New variables F(Yo) ,  G(Yo) and Z(Y0) are defined by the equations 

X(YJ = WG) 4 1 -  2%), (67) 

where X = d Y o / d h .  It follows from (64), (65) and (66) that as p + 0, P, G and 2 
all tend to one. A sign change occurring in the last equation in (67) contains the 
only difference from the analogous transformation (33). The equations (37), (38) 
are even in z and are not affected by a sign change in the last term in (33). The 
substitutions (67) therefore lead to equations which are identical with (37), (38) 
with F ,  G and 2 replacingf, g and x ,  namely 

dG G(F-2')  
dZ - Z(2-F-22)'  
_ -  

(69) 
dF G(F - F2)  + ( I / w z ~ )  (1  -2') __- 
&z = 2G2(2-F-22) . 

Initial values of dG/dZ and dF/dZ are determined by expansions of F and 
G analogous to (39), (40). Choice of the square root sign to be taken in the 
equation for Fo = (dF/dZ),=,, corresponding to (4l), is decided from the 
behaviour near 2 = 1 of the equation corresponding to (34). The value of 
J( 1 - 2Y,) a t  the tip may be determined to be zero from (66). A negative value 
of (Fo+ 2) is desired to satisfy this condition, and this is only attained when 
m2 < 1 and by a choice of the negative square-root sign in the equation for Fo. 
The direction of integration from the point Z = 1 is deduced from thezassump- 
tion that the required solution expands away from the tip wedge shape. The 
slope of the free surface is given by the equation corresponding to (27). Using 
the substitutions (67) this equation is expressed as *- FG 

ah - -mz-j7- 
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Expanding near 2 = 1, 

a= -m,{l - (1  -Fo-Go) (2- 1) + .. .}, (71) 

where Go = (dG/dZ),,,. The direction of integration is chosen such that (2- 1) 
has the opposite sign to (1  - Fo - Go) .  

Equations (68), (69) may now be integrated numerically to provide the 
solution corresponding to the expansion away from the wedge p = m2( A, - A). 
Numerical solutions of (68), (69) for the cases m2 = &, A, corresponding to 

4.0- 

35 - 

30 - 

2.5 - 

20 - 
G(Z), 48" wedge / 

f /  / /  

8.0 

7.0 

6.0 

5.0 

h 

4.0 

30 

2.0 

10 

z 
FIGURE 5. Numerical solutions to equations (68), (69) for wedges of semi-angle 3" and 4.8". 

wedges of semi-angle 3.0", 4.8", respectively, are shown in figure 5. The solution 
is valid in the tip of fluid near the point of contact of the free surface with the 
wall and is used to improve the accuracy near the wall of the solution obtained 
in $3.  The procedure for matching these solutions is discussed in 5 5. The solution 
near the tip cannot be completed in the physical plane until the value of 2 at the 
matching point is known. Denote this by Zi. 

Transformation to the physical plane of the solution of equations (68), (69) is 
inferred by analogy with equations (51), (52), rewritten with h and p inter- 



368 E.  Cumberbatch 

changed, capitals replacing small symbols for the flow variables and Z, replacing 
zw as the lower limit of integration. Hence, using (51), ,/( 1 - 2Y0) is given by 

where R > 0 is a constant; and using the substitutions (67), it  follows that 

The equation for dh/dZ in the solution valid near the tip is derived by analogy 
with (53), but with a sign change resulting from the sign difference in the last 
equations of the substitutions (33) and (67). The equation for h is 

where the constant of integration has been chosen so that h = A, at p = 0. An 
expansion is required to obtain the contribution near 2 = 1 to the integral in 
(74) since the integrand is singular at Z = 1. 

Equations (731, (74) give the free surface shape in parametric form for the 
solution valid near the tip. The function @ = Yo(h)+,u2Y,(A) can now be 
determined at any point in the flow by using the appropriate value of ,u and 
obtaining Y0(Z) from (72) and Y,(Z) from (67), 2 being obtained in terms of h 
from (74). This completes the formal description of the flow in the tip, but no 
numerical values can be given until the procedure for matching the tip flow 
with the solution in $ 3  is given in $5.  

5. Matching of solutions 
In  this section, details are given of how the solutions derived in the previous 

sections may be joined together in as smooth a manner as possible. It is shown 
that a matching point exists at which the slope and curvature of the free surface 
are continuous, the function 9 is continuous along the free surface and the mass 
conservation law is satisfied. A check on the accuracy of the method used is 
provided by the condition that the arc length between particles in the free 
surface is conserved. 

Presupposing that a matching point of the two solutions has been chosen and 
denoting this point by the suffix j ,  the solution at large distances from the wall 
is given by the solution derived in $ 3  with 2, replacing zw, as it is not now intended 
to use this solution right up to the wall. The constant k occurring in $ 3 depends 
on the choice of z, and therefore needs to be replaced by k‘ which depends on 
2,. The value of h at the matching point is given by (52) as 

A, = m, k’g,. 

The formula for ,u corresponding to (54) becomes 

(75) 
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The condition that the solution at large distances from the wall has the 
asymptotic wedge behaviour given by (32) is expressed as 

This equation is used to find a relation between k‘ and pj by expressing it in the 
form corresponding to (56) with ( l / k ’ )  (1  +p,) replacing l / k  on the left-hand side 
and z, replacing zw as the lower limit in the integrals on the right-hand side. The 
limit as z -+ 1 of these integrals is deduced by an expansion near z = 1 in a 
similar manner to the derivation of k .  Thus a given angle wedge at  infinity is 
uniquely described up to any chosen join-up point pi. 

The solution valid near the tip has been given in $4.  The flow variables and 
the shape of the free surface are given there in terms of the constants m2, 2, 
and K .  The p-co-ordinate of the matching point is deduced from (73) as 

It is seen that the co-ordinates of the matching point A,, pj are given by (75) and 
(78) in terms of the constants k’, K ,  m2, z, and 2,. The condition (77) for the 
correct asymptotic wedge behaviour gives a relation between p,, k‘ and z,. The 
value of h at the wall, A,, is given by (74) on substituting h = hi and Z = Z,, 
in terms of K ,  A, and 2,. Thus there are four undetermined constants, which are 
taken to be K ,  m2, z, and Zj. 

The condition of the continuity at the matching point of the potential on the 
free surface is imposed. That is, the expansions $&A) + h2$l(,u) andY,(h) + p2uP1(A) 
are to have the same value at the matching point. The values at the matching 
point for the two expansions are deduced from the sets of equations (33), (51), 
(76) and (67), (72), (73), respectively, to give 

1-k’2-m2,kf2f. 3 9 3  ? - - 1-K2-m:KaFjQ;. (79) 

This equation is regarded as determining K ,  the positive value being taken, 
leaving the constants m2, z j ,  Z,, still arbitrary. 

The matching of the two solutions valid at large and small distances from the 
wall has now been effected in terms of the matching points zj, 2, of the reduced 
equations and m2, the angle at which the free surface meets the wall. The method 
used in choosing z,, 2, will now be explained. Conditions of the continuity of 
slope and curvature of the free surface at the matching point of the two solu- 
tions are imposed. The slope of the free surface in terms of the reduced variables 
of the solutions valid at  large distances from the wall and near the tip are given 
in (45) and (70) as 

24 Fluid Mech. 7 
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respectively. The second derivative of the free surface at a matching point for 
the two solutions may be deduced to be 

z 
dh2 = Kmi G4P3 

By equating the expressions for the first and second derivatives, values of zj, 2, 
may be found at which continuity of the first and second derivatives of the free 
surface is satisfied. It is to be noticed that unfortunately the supplementary 
integrations involved in finding the constants of integration k', K have to be 
undertaken before the values of the second derivatives at each side of the 
matching point may be found. This makes the solution of (82), (83) numerically 
tedious. The procedure adopted to determine the z,, 2, which give the same value 
for the functions on the right-hand sides of equations (80), (81) and of (82), (83) 
is as follows. A first estimate of the slope of the free surface at the matching 
point is obtained by assuming that it is mid-way between the slope of the wedge 
at large distances and the slope of the free surface at the wall. Values of the 
matching points zj, 2, in the reduced planes of the solutions may then be deter- 
mined from equations (80), (81). The supplementary integrations necessary to 
obtain k', K are then performed and values of the second derivative of the free 
surface at each side of the matching point are calculated from (82), (83). From 
these values a better estimate for the slope of the free surface at the matching 
point is obtained. In  this way continuity of the first and second derivatives of 
the free surface at the matching point was achieved to three significant figures. 

The solution is now determined apart from the value of m2. The condition of 
the conservation of mass is satisfied by choice of m2. In  the A, p plane this 
condition may be seen to be the condition that the area contained between the 
free surface and wedge shape given by h = ml(p + 1) is equal to the area of the 
part of the wedge lying in the negative p-plane. This condition may be stated as 

where the first integral on the right-hand side is the area outside the wedge 
in p 2 p,, the other integral is the area outside the wedge in h 2 A, and the 
middle terms give the area of the part lying outside the wedge in the rectangle 
0 < h < hj, 0 6 < pi. Transformation of the integrals in (84) to the reduced 
variables may be deduced for the first integral by use of equations (52) and (76), 
and for the second integral by use of (73), (74). After dividing by m,, equa- 
tion (84) may then be written 

1 dZ 
- K23S G(2)exp ( 2 6  2 -3 - 2 2  ) 2 - P - 2 2 '  

m1 zj 
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The contribution near z = 1 to the first integral on the right-hand side is 
derived using the expansions (39), (40). An expansion near Z = 1 in the last 
integral in (85) is needed since the integrand becomes infinite at  Z = 1. The 
integral may be obtained numerically up to Z = Z*,  a point near Z = 1. The 
integral is expanded between Z = Z* and Z = 1, using the expansions for F ,  G 
corresponding to those derived for f, g in $ 3 .  

P h YO Yl $F z 
0 1.975 0-5 - 0.5 0.5 1 
0-080 1.026 0.050 - 0.586 0.046 0.99 
0.085 0.981 0.007 - 0.671 - 0.002 0.98 
0.088 0.953 - 0.020 - 0.754 - 0.025 0.97 
0.091 0.934 - 0'039 - 0.835 - 0.046 0.96 
0.094 0.918 - 0.055 - 0.914 - 0.063 0.95 
0.096 0-904 - 0.069 - 0.991 - 0.078 0.94 
0.105 0.866 - 0.108 - 1.281 - 0.122 0.90 
0.114 0.837 -0.136 - 1.540 - 0.156 0.86 
0.123 0.815 - 0'157 - 1.770 - 0.184 0.82 
0.133 0.796 - 0.175 - 1.969 - 0.210 0.78 
0.144 0.778 - 0.191 - 2.137 - 0.235 0.74 
0.157 0.762 - 0.204 - 2.275 - 0.260 0-70 
0.171 0.747 - 0.217 - 2.382 - 0.287 0.66 

TABLE 3(i) 

P A $0 $1 @F z 
0.171 0.747 - 0.475 0.338 - 0.287 0.374 
0.186 0.734 - 0.483 0-312 -0.315 0-4 
0.215 0.714 - 0.601 0.258 - 0.369 0.45 
0.247 0.698 - 0.622 0.199 - 0.425 0.5 
0.282 0.688 - 0.549 0.138 - 0.484 0.55 
0.321 0.681 - 0.581 0.073 - 0.547 0.6 
0.365 0.678 - 0.623 0.006 - 0.620 0.65 
0.416 0.680 - 0.674 - 0.063 - 0.703 0.7 
0.478 0.688 - 0.744 -0.133 - 0.806 0.75 
0.553 0.702 - 0.838 - 0.205 - 0.939 0.8 
0.653 0.727 - 0.978 - 0.277 - 1.124 0.85 
0.803 0.772 - 1.211 - 0.351 - 1.421 0.9 
1.088 0.872 - 1.734 - 0.425 - 2.058 0.95 

TABLE 3(ii) 

TABLES 3 AND 4. Values of the flow variables for the matched solution obtained in § 5 for 
the 22.2' (table 3) end 4.5' (table 4) semi-angle wedges. The first half of each table is to be 
interpreted &B giving Yo, Yl, 2 and the free surface p as functions of A in the region 
h, < h < h, for the solution near the tip. The second half of each table is to be inter- 
preted as giving $o, el, z and the free surface h as functions of p in the region p > p, for 
the solution far from the wall. Values of $ = $F on the free surface are given in both regions. 

The following procedure to determine m2 is used. A first estimate of the tip 
angle is given by the angle between the free surface and the wall at  the point of 
contact obtained in the approximate solution in $3.  The right-hand side of 
equation (86)  is then evaluated for the matched solution obtained using this tip 
angle and this value then indicates a better value for the tip angle, an under- 
estimate for the mass implying that a smaller tip angle is required. 

24-2 
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A solution was obtained in the manner described above for 22.2" and 45" semi- 
angle wedges. The mass conservation condition was satisfied to two significant 
figures by a choice of the tip angles 4.8" and 3", respectively. The slope and 
curvature of the free surface were matched to three significant figures. The 

P 
0 
0.072 
0.075 
0.077 
0.079 
0-080 
0.082 
0.083 
0.085 
0.086 
0.088 
0.094 
0.100 
0.107 
0.115 
0.123 
0.133 
0.134 

P 
0.134 
0.135 
0.176 
0.221 
0.269 
0.321 
0.378 
0.442 
0-512 
0.593 
0.686 
0.797 
0.932 
1.106 
1.345 
1.717 
2.484 

A 
3-201 
1.851 
1.813 
1.790 
1.773 
1.760 
1.749 
1.739 
1.731 
1.724 
1-717 
1.694 
1.676 
1.661 
1.648 
1.636 
1.625 
1.624 

A 
1.624 
1.623 
1-593 
1.581 
1.583 
1.597 
1.621 
1.655 
1.700 
1.757 
1.829 
1.920 
2.037 
2.192 
2.414 
2.767 
3.504 

T O  TI 

0.5 - 0.5 
- 0.410 - 0.636 
- 0.462 - 0.768 
- 0.493 - 0.899 
- 0.516 - 1.026 
- 0.534 - 1.151 
- 0.549 - 1.273 
- 0.562 - 1.392 
- 0.573 - 1.509 
- 0.583 - 1.623 
- 0.592 - 1.735 
- 0.622 - 2.153 
- 0.644 - 2.528 
- 0.662 - 2.859 
- 0.678 - 3.145 
- 0.692 - 3.388 
- 0.703 - 3-585 
- 0.704 - 3.594 

TABLE 4 (i) 

$0 $1 

- 1.073 0.116 
- 1.073 0.115 
- 1.090 0.065 
- 1.112 0.015 
- 1.140 - 0.033 
- 1.176 - 0.080 
- 1.221 - 0.125 
- 1.277 - 0.168 
- 1.348 - 0.210 
- 1.438 - 0.249 
- 1.554 - 0.287 
- 1.709 - 0.322 
- 1.920 - 0.356 
- 2.226 - 0.388 
- 2.707 - 0.418 
- 3.584 - 0.447 
- 5.846 - 0.474 

$F 
0.5 

- 0.413 
- 0.466 
- 0.498 
- 0.522 
- 0'541 
- 0.557 
- 0.571 
- 0.584 
- 0.595 
- 0.606 
- 0.641 
- 0.670 
- 0.695 
- 0.719 
- 0.743 
- 0.767 
- 0.768 

$F 
- 0.768 
- 0.770 
- 0.925 
- 1.075 
- 1.223 
- 1.380 
- 1.549 
- 1.737 
- 1.955 
- 2.207 
- 2.514 
- 2.895 
- 3.397 
- 4.090 
- 5.142 
- 7.007 
- 11.666 

TABLE 4(ii). For explanation see legend to  table 3. 

2 
1 
0.99 
0.98 
0.97 
0.96 
0.95 
0.94 
0.93 
0.92 
0.91 
0.90 
0.86 
0.82 
0.78 
0.74 
0.70 
0-66 
0.658 

z 
0.199 
0.2 
0.25 
0.3 
0.35 
0.4 
0.45 
0.5 
0-55 
0-6 
0.65 
0-7 
0.76 
0.8 
0.85 
0.9 
0.95 

values of zj, Zj, k', K were 0-374, 0.66, 1.40, 1-20 and 0.199, 0.658, 1-77, 1.55, for 
the 22.2" and 45" wedges, respectively. The co-ordinates hi, pj of the matching 
point were 0.747, 0.171 and 1.624, 0.134, respectively. The shape of the free 
surfaces for the solutions joined in this way is shown in figure 3, with the 
matching points indicated. Tables 3 and 4 give the values of the flow variables 
for the solutions matched, Yo, Yl and 2 being given as functions of h for the 
flow in the region A, < h < &, and ?++o, ?++l and z given as functions of p for the 
flow in the region p 2 pj. The corresponding free surface values of h and ,u are 
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given. The values of @ = @F on the free surface are also given, using (19) or (63) 
in the appropriate regions of the flow and using the free surface values of A, p. 

The flow in the rectangle bounded by the lines A = 0,  A, and p = 0, pi 
indicated as region I11 in figure 6 is not deduced in the solution presented above. 
The solution (19) at large distances from the wall is valid in the flow region I 
from p = p, to p = co and the solution (63) near the wall is valid in region I1 
bounded by the lines A = A, and A = A,. However, the solution in region I11 

I ,  

FIGURE 6. Sketch of the matched solution obtained in $ 5 .  The solution far from the wall 
obtained in § 3 is valid in region I and the solution near the wall obtained in 8 4 is valid in 
region 11. 

may be obtained by a relaxation method, using the appropriate solution (19) 
or (63) on the boundaries adjacent to region 111, together with the boundary 
conditions (18) on the other two boundaries. The pressure distribution on the 
wall in the range 0 < A < Aj may then be determined from (57). The pressure 
distribution between the A-co-ordinates, A, and A,, may be derived from the 
solution valid near the tip. The pressure coefficient p/$p V2 on the wall p = 0 in 
this A range may be deduced from equation (57), making the substitution (63) 
for @, as 

-- - 1-2Y0-Y;2= (1-2Y0)(1-22) 
$f v2 

in terms of the reduced variables, using (67). The pressure distribution on the 
wall over the whole range 0 < A < A, obtained in this manner is shown in 
figure 4. In  this description of the flow the pressure on the wall is discontinuous 
at A = A, due to its dependence on d$/dA, which has not been matched between 
regions I1 and I11 of figure 4. For the 22.2" wedge this pressure jump is 
indiscernible, but for the 45" wedge the jump in p/&pV2 is 0-321-about 10 % 
of the total variation along the wall. The force coefficient (60) using this pressure 
distribution has the values 2.4 and 1.6 for the 45" and 22.2" semi-angle wedges, 
respectively. 

The condition of the conservation of arc length along the free surface is used 
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to provide a check on the accuracy of the solution obtained by the matching 
procedure described above. The theorem that the arc length of the free surface 
in a two-dimensional similarity flow is conserved was discovered independently 
by Wagner and Garabedian. The arc length conservation condition is formu- 
lated in the A, p similarity plane by relating the arc length of the free surface for 
the solution obtained to the arc length of the free surface of the wedge shape 
h = m,(p+ 1) obtained in the absence of the wall. Since these arc lengths are 
infinite the condition is derived using a technique similar to the one involved in 
finding k from (55). Let p* be the p-co-ordinate corresponding to z*. The parts 
of the arc lengths to be compared in the range from p* to infinity are collected 
together and an expansion found for their difference. The arc length condition is 
therefore put in the form 

where the arc lengths in the range p* to infinity of the solution and the wedge 
are to be found in the first integral on the right-hand side. The remainder of the 
arc length of the wedge is on the left-hand side and the remainder of the arc 
length of the solution is given in the last two integrals on the right-hand side 
which represent the contributions from the two sides of the matching point. 
Equation (87) is obtained in terms of the reduced variables, using (45) for dhldp 
and ( 7 6 )  for dp/dz for the solution between infinity and p,, and using (70) for 
d,u/dA and (74) for dA/dZ for the solution between A, and A, to give 

Expansions are needed in the first and last terms on the right-hand side of (88). 
The arc lengths evaluated for the matched solutions for the 45" and 22.2" semi- 
angle wedges were underestimates of 0.26 Vt and 0.05 Vt, respectively. (The 
approximate method of $3 gave underestimates of 2.2 and 0.7.) The matching 
procedure described above therefore gives a satisfactorily close approximation. 
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